

Cross Section Uncertainties in the Thermal and Resonance Regions

S. F. Mughabghab* and P. Oblozinsky

National Nuclear Data Center Brookhaven National Laboratory

*Email: mugabgab@bnl.gov

Background

- ☐ Increasing interest in uncertainties of neutron resonances required for advanced reactor systems.
- This information is available in the Atlas of Neutron Resonances.
- ☐ In the Atlas, resonance information reproduces the cross sections and resonance integrals, but not their uncertainties.
- Present study initiated to achieve consistencies between measured and calculated uncertainties.

Background

- □ The Subgroup 26 of the International Working Party on evaluation cooperation is interested in 53 materials comprising 19 actinides and 34 structural, coolant and moderator materials.
- Out of these NNDC produced covariances for 35 materials.
- □ In the present project, emphasis is placed on the uncertainties of the thermal capture (fission) cross sections for the following.
- ¹⁹F, ²³Na, ²⁸Si, ⁵²Cr, ⁵⁵Mn, ⁵⁶Fe, ⁵⁷Fe, ⁵⁸Ni, ⁹⁰Zr, ⁹¹Zr, ⁹²Zr, ⁹⁴Zr, ¹⁶⁶Er, ¹⁶⁷Er, ¹⁶⁸Er, ¹⁷⁰Er, ²⁰⁶Pb, ²⁰⁷Pb, ²⁰⁸Pb, ²⁰⁹Bi, ²³³U, ²³⁴U, ²³⁶U, ²³⁷Np, ²³⁸Pu, ²⁴⁰Pu, ²⁴¹Pu, ²⁴²Pu, ²⁴¹Am ^{242m}Am, ²⁴³Am, ²⁴²Cm, ²⁴³Cm, ²⁴⁴Cm, ²⁴⁵Cm.

- Inspect the Atlas electronic files. Fill in the missing information, such as Γ_{γ} for s- and p-wave resonances and estimated uncertainties.
- Convert the Atlas file to ENDF format by applying PTANAL program; Random assignments of spins to follow (2J+1) law.
- □ Run PSY325 to calculate the contributions from the various resonances to the thermal cross section and resonance integral with their uncertainties read from the Atlas file.
- □ Compare with the uncertainty of the measured thermal cross section. Carry out changes in the uncertainties of RP, iterate the procedure until conversion is achieved.

☐ Attribute reported uncertainty to that of bound levels and/or low-lying positive energy resonances.

$\Gamma_{\gamma 1} / \Gamma_{\gamma 0}$ and S_1 Versus Mass Number

Systematics

$\Gamma_{\gamma 0}$ / $\Gamma_{\gamma 1}$ Versus Mass Number

Systematics

$$(\Delta \sigma_{\gamma})^{2} = \left(\frac{\partial \sigma_{\gamma}}{\partial \Gamma_{n}} \Delta \Gamma_{n}\right)^{2} + \left(\frac{\partial \sigma_{\gamma}}{\partial \Gamma_{\gamma}} \Delta \Gamma_{\gamma}\right)^{2} + \left(\frac{\partial \sigma_{\gamma}}{\partial \Gamma_{f}} \Delta \Gamma_{f}\right)^{2} + \left(\frac{\partial \sigma_{\gamma}}{\partial E_{o}} \Delta E_{0}\right)^{2}$$

$$(\Delta \boldsymbol{\sigma}_f)^2 = \left(\frac{\partial \boldsymbol{\sigma}_f}{\partial \Gamma_n} \Delta \Gamma_n\right)^2 + \left(\frac{\partial \boldsymbol{\sigma}_f}{\partial \Gamma_\gamma} \Delta \Gamma_\gamma\right)^2 + \left(\frac{\partial \boldsymbol{\sigma}_f}{\partial \Gamma_f} \Delta \Gamma_f\right)^2 + \left(\frac{\partial \boldsymbol{\sigma}_f}{\partial E_o} \Delta E_0\right)^2$$

$$\left(\Gamma_{\gamma}, \Gamma_{n}\right) = 2 \left(\frac{\partial \sigma_{\gamma}}{\partial \Gamma_{n}} \Delta \Gamma_{n}\right) \left(\frac{\partial \sigma_{\gamma}}{\partial \Gamma_{\gamma}} \Delta \Gamma_{\gamma}\right) \rho \left(\Gamma_{\gamma}, \Gamma_{n}\right)$$

$$\left(\Gamma_{f}, \Gamma_{\gamma}\right) = 2 \left(\frac{\partial \sigma_{f}}{\partial \Gamma_{f}} \Delta \Gamma_{f}\right) \left(\frac{\partial \sigma_{f}}{\partial \Gamma_{\gamma}} \Delta \Gamma_{\gamma}\right) \rho \left(\Gamma_{f}, \Gamma_{\gamma}\right)$$

⁵⁵Mn Thermal Cross Sections and Resonance Properties

55 M n	THERMAL CROSS SECTIONS	⁵⁵ ₂₅ M n
	THERMAL CROSS SECTIONS	
	$\sigma_{\gamma}^{0} = 13.36 \pm 0.05$ b	
	$\sigma_{s} = 2.06 \pm 0.03$ b	
	$\sigma_{coh} = 1.734 \pm 0.017$ b	
	$\sigma_{incoh} = 0.6 \pm 0.2$ b	
	$b_{coh} = -3.750 \pm 0.018$ fm	
	$b_{coh(+)} = -2.36 \pm 0.03$ fm	
	$b_{coh(-)} = -5.69 \pm 0.03$ fm	
	$R' = 4.5 \pm 0.4$ fm	
	RESONANCE PROPERTIES	
	$D_0 = 2.42 \pm 0.15 \text{ keV}$	
	$D_1 = 1.1 \pm 0.1 \text{ keV}$	
	$S_0 = 4.2 \pm 0.8$	
	$S_1 = 0.31 \pm 0.05$	
	$<\Gamma_{\gamma 0}>=0.75\pm0.15$ eV	
	$<\Gamma_{\gamma,1}>=0.40\pm0.10$ eV	
	$I_{\gamma} = 13.4 \pm 0.5$ b	

⁵⁵Mn Resonance Parameters

$I^{\pi} = 5/2 - \sigma_{\gamma} (+) = 1.75 \text{ b}$	σ	; _γ (-) = 8	. 28 Ъ	%Ab 1	$\sigma_{\gamma} = 100$ $\sigma_{\gamma} (B) = 3.33 \text{ f}$)		Sn =	7270.45±0.13 ke
	E ₀ (keV)	J	1		2gΓ _n (eV)	Γ_{γ} (eV)	2gI (eV		$2g\Gamma_n^1$ (eV)	
	-1.615	3	0			(0.75)	49.217			_
	-0.2028	2	0			(0.75)	0.0805	í		
	0.3373±0.0010	2	0	18.3	± 0.4	0.31 ±0.02	0.998	±0.022		
	1.099 ± 0.002	3	0	18.0	± 0.8	a0.435±0.100	0.543	± 0.024		
	2.327 ±0.005	3	0	460	±24	0.34 ±0.13	9.45	± 0.49		
	4.000 ±0.008		[2]	0.0012	24± 0.00014				0.00387±0.00044	
	4.302 ±0.009		1	0.0038	34± 0.00024				0.0108 ±0.0007	
	4.939 ±0.010		1	0.932		0.290±0.013			2.12	
	6.330 ±0.006		1	0.232	± 0.011				0.365 ± 0.017	
	6.960 ± 0.006		1	0.0073	3 ± 0.0011				0.0100 ± 0.0015	
	7.102 ± 0.006	2	0	332	± 8	1.03 ± 0.08	3.94	±0 . 09		
	8.815 ±0.007	3	0	432	±12	0.82 ± 0.08	4.60	±0 . 13		
	9.789 ±0.008		1	0.014	± 0.001				0.0115 ±0.0008	
	10.615 ±0.009		1	0.0432	± 0.0018				0.0315 ±0.0013	
	10.895 ±0.009		1	0.24	± 0.02				0.17 ± 0.01	
	11.629 ±0.010		1	0.067	± 0.003				0.043 ± 0.002	
	12.688 ±0.010		1	1.1	± 0.1	0.323±0.035			0.61 ± 0.06	
	14.705 ± 0.012		1	0.096	\pm 0.003				0.043 ± 0.001	
	14.948 ± 0.012		1	0.358	± 0.020				0.157 ± 0.009	
	16.167 ± 0.013		1	0.704	± 0.056				0.275 ± 0.022	
	17.725 ±0.015		1	0.0700	± 0.0048				0.0238 ± 0.0016	
	17.802 ± 0.015	3	0	12.8	± 2.3	0.740±0.032	0.096	±0 . 017		
	17.990 ±0.015	2	0	54	± 5	0.47 ± 0.02	0.40	±0 . 04		
	18.812 ± 0.016		1	1.43	\pm 0.24				0.447 ±0.075	
	19.127 ± 0.016		[2]	0.0113	± 0.0017				$0.00344 {\pm} 0.00052$	
	20.225 ± 0.017		1	0.36	\pm 0.02				0.101 ± 0.006	
	20.488 ± 0.017		[2]	0.0038	± 0.0020				0.0010 ± 0.0006	

channel spin J=2.

^a A measured radiative width of 310 meV results in a calculated resonance capture integral of 11.7 barns, which is at variance with a measured weighted average value of 13.4-+0.5 b.

55 Mn Capture Cross Section $σ_γ = 13.36 \pm 0.05 (0.37\%)$ b

⁵⁵Mn Uncertainty Adjustments

E ₀ (keV)	$2g\Gamma_{n}(eV)$	$\Gamma_{\gamma}({\sf eV})$	σ_{γ} -b
-16.15	6255(0, 0)	0.790, 0.75(0, 0)	0.32
-0.202	1.15(0, 0)	0.790, 0.75(0, 0)	3.28
0.337	18.3(0.2, 2.2)	0.400, 0.31(0, 6.5)	7.44
1.099	18(0.4, 4)	0.488,0.435(0, 23)	1.50
2.327	460(0.02, 5.2)	0.340, 0.40(0, 38)	0.17

¹⁶⁷Er Capture Cross Section

¹⁶⁷Er $\sigma_{\gamma} = 649 \pm 8 \text{ b}$

E ₀ (eV)	$2g\Gamma_{n}$ (mV)	Γ_{γ} (mV)	σ_{γ} (b)
-23.6	117	88.0	7.9
	(3.3, 0)%	(11, 0)%	
0.460	0.3031	87.12	423
	(3.3, 3.3)%	(0.4, 0.2)%	
0.584	0.2163	86.20	161
	(4.6)%	(0.4, 0.4)%	

⁵⁶Fe Capture Cross Section

Some Sources of Correlations

- □ Capture and Fission Kernels: Γ_f / Γ_γ is Determined. Hence, $\rho(\Gamma_f, \Gamma_\gamma)$ is Positive.
- Neutron Sensitivity Correction to Capture Measurements:

$$\Gamma_{\gamma}(\exp) = \Gamma_{\gamma} + k\Gamma_{n}$$

Hence, $\rho(\Gamma_{n}, \Gamma_{\gamma})$ is Positive.

However, This May Be Signature of Valence Capture.

Covariance Workshop.

Effect of $\rho(\Gamma_n, \Gamma_\gamma)$ on Uncertainties

nucleus	σ _γ (b)	ρ = 0	ρ = -1	ρ= +1
		Δ (b)	$\Delta(b)$	Δ (b)
⁵² Cr	0.86±0.02	0.020	0.018	0.023
⁵⁵ Mn	13.36±0.05	0.047	0.044	0.049
²³⁷ Np	178.7±3.0	3.0	1.6	4.0

Conclusions

- □ Internal consistency between calculated and estimated uncertainties is achieved for 15 actinides and 21 coolant and structural materials.
- □ This was realized by re-assigning uncertainties to the parameters of the bound levels and low-energy resonances.
- □ If the major contribution to the thermal cross section is due to the positive energy resonances, then their uncertainties are drastically changed.
- ☐ In few cases, where the thermal cross sections are dominated by bound levels, the uncertainties of the positive energy resonances are unaffected.
- The correlations between parameters are studied and their effects on the uncertainties is determined for some cases.

Conclusions

- Outstanding issue:
- In certain cases, uncertainty of positive energy resonances drastically reduced.
- Possible solution to invoke negative correlation between the bound levels and positive energy resonances.

